Page 15 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha = \$ 5,520 #### Maintenance cost (a) Maintenance [(0.5 hr/shift)/(8 hr/shift)] labor costs = \$4,800 *(HRS)* (\$hourly rate) (b) Maintenace materials = \$4,800 1.0*(Maintenance labor costs) Maintenance costs = \$(4,800 + 4,800) = \$ 9,600 Disposal of solvent = \$9,654 ASR * Dsc TOTAL DIRECT ANNUAL COSTS = (Electricity + solvent + operating + Maintenance + Disposal of solvent) Costs = \$24,782 #### INDIRECT ANNUAL COSTS = 0.60 (Operating + Maintenance) Overhead = \$9,072 Property Tax = 1 percent of TCI = \$2,760 Insurance = 1 percent of TCI = \$2,760 Administrative = 2 percent of TCI = \$5,520 = CRF * TCI Capital recovery cost factor Capital Recovery = \$276,020*0.1627 is based on 10% interest rate = \$44,921 and 10 years of life = 0.1627 Total Indirect Costs = (Overhead + Property Tax + Insurance + Administrative + Capital Recovery) = \$65,034 # Page 16 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha TOTAL ANNUAL COSTS = TOTAL INDIRECT ANNUAL COSTS + TOTAL DIRECT ANNUAL COSTS = \$(65,034 + 24,782) = \$89,816 #### PART II Economic Feasibility for Control Technologies for Modules E, F, 30 Gal-A, 30 Gal-B, & C-Wing in Building 110 # 2A. Condensation Control Technology HAP heat content: 17,000 Btu/lb Molecular weight of HAP, Mwhap: 70.87 Emission Stream Flow, Qea: 10.0 acfm Emission Stream Flow, Qe: 10.0 scfm Stream Pressure, P: 1 atm Stream Temperature, Te: 770F Air Pollution, HAP: VOC Maximum HAP conc., HAPe: 185034 ppmv Removal efficiency, RE: 96.3% 20.0 Btu/hr- ft²-0F Heat Transfer Coefficient, U: System Pressure Drop, P: 5.0 inches Temperature for 1 mm Hg vapor pressure -54.6°F Temperature for 100 mm Hg 67.9°F vapor pressure Operating hours/year, HRS: 2,560 hours Heat exchanger efficiency, HR: 95% System pressure drop, Psys: 5.0 inches Coolant pump motor efficiency, n: 0.65 Peak/Average Flow Ratio: 1.0 scfm/scfm Minimum coolant velocity: 3.0 ft/sec Coolant tube diameter: 0.375 inches 0.65 Btu/lb-0F Coolant specific heat: Coolant specific gravity, Sg: 7.48 lb/gal Coolant liquid cost, US\$cool: \$7.6/gal From vendor Auxiliary equipment cost, AEC: (Fan, ductwork, stack, & damper) \$25,000 Cost of Building, Bldg: \$0.0 Cost of site preparation, SP: \$0.0 #### Page 17 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha Electricity cost, U\$elect: \$0.059/kwh From Table 4.6-7, *358.6/340.1 \$30.o/hr From Table 4.3-6, *358.6/340.1 Maintenance labor cost: Operating labor cost: \$30.0/hr From Table 4.3-6, *358.6/340.1 Refrigerator efficiency, Ef: 65 percent Calculate Ppartial pressure of HAP in outlet stream: Ppartial = 760 * (1-0.01RE)/(1-RE * 1.0E-08 * HAPe) * HAPe * 1.0E-06 = 6.33 mmHg Condensation Curve Xint, Xint $= 1/(X_{int} + 460)$ $= 0.00247 (1/^{0}R)$ Condensation curve slope, $= -(1/(T_{con 100mm Hg} + 460)) + Xint/2$ = 0.00029 0 R mm Hg Calculate T_{con} = $1/[(X_{int} - CSI*LOG(P_{vapor})) - 460]$ $(-25.04 \, ^{0}\text{F}) = -13.1 \, ^{0}\text{F}$ Composition of Coolant: DOWTHERM IF T_{con} >60, WATER IF 45 < Tcon > 60, CHILLED WATER IF -30 < T_{con} > 45, DOWTHERM IF Tcon < -30, FREON. Moles HAP in = Qe/392 * HAPe * 1.0E-06 inlet emission stream / min, HAPem = 0.00472 lb-moles/min #### Page 18 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha Moles HAP in outlet emission stream/min, = Qe/392 * (1- HAPe * 1.0E-06) * P_{vapor} / (Pe-P_{vapor}) HAPem = 0.00017 lb-moles/min Moles HAP condensed /min, HAP_{con} = HAP_{em} - HAP_{om} = 0.00455 lb-moles/min Heat of vaporization at Tcon, dH = 709 Btu/lb-mole HAP avg, spec. heat for temp Tcon to Te, = $10.84 \text{ Btu/ lb-mole-}^{\circ}\text{F}$ Cphap Enthalpy change of condensed HAP = HAP_{con} [dH + CP_{hap} *(Te - Tcon)] = 7.66 Btu Enthalpy change = [(Qe/392) - HAP_{em}] CP_{air} (Te - T_{con})] of air, Hnoncond = 13.20 Btu Condenser heat load = 1.1 * 60 * $(H_{con} + H_{noncon})$ = 1377 Btu/hr Coolant input temperature, T_{cooli}, $= T_{con} - 15$ $= -28.1^{\circ} F$ Coolant output temperature, $T_{\rm coolo}$ $= T_{cooli} + 25$ = -3.1°F Log mean temperature difference, Dt_{lm} = $(Te - T_{coolo} - 15)/LN ((Te - T_{coolo})/15)$ = $38.9^{0}F$ # Page 19 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha Area of condenser, = H_{load} * (PkFlow/AvgFlow) / (U*DTlm) $= 1.77 \text{ ft}^2$ Average specific heat of coolant, Cpcoolant $= 0.65 \text{ Btu/lb}^{0}\text{F}$ Coolant flow rate, Q_{cool} = MAX(H_{load} /($CP_{coolant}$ (T_{coolo} - T_{cooli}), F_{min} * * $Td^2 *D_{ens} * 7.48 gal/ft^3 * 3 * 3600 sec/hr)$ = 590 lb/hr Total coolant required, Qctot = 200 gallons (Estimated) Refrigeration capacity, Ref = H_{load} * (PkFlow/AvgFlow)/12000 = 0.11 tons Recovered product, Qrec = 60 * HAP^{con} * Mw_{hap} = 19.33 lb/hr CAPITAL COSTS DIRECT COSTS Purchased equipment costs Refrigeration Capital Cost, RCC = \$28,919 From Table 4.8-4, corrected to April, 1992 dollars Condenser Capital Cost, CCC = \$5,836 From Figure 4.8-3, corrected to April, 1992 dollars Auxiliary Equipment Cost, AEC = \$25,000 Parameter Cost of Cooling = Qc_{tot} * U\$cool # Page 20 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 - verien Review Engineer: Dr. T.P.Sinha Liquid, T\$cool = \$1,520 Total Equipment Cost, A = \$ (RCC + CCC + AEC + T\$cool) = \$61,275 Instrumentation = 0.10 * A Cost, I = \$6,128 Sales Taxes, S = 0.05 A = \$3,064 Freight, F = 0.05 * A = \$3,064 Purchased Equipment Costs, B = \$ (A + I + S + F)= \$ 73,530 # Direct Installation Costs Foundation and = 0.08B Supports = \$5,882 Handling and Erection = 0.14B = \$10,294 Electrical = \$5,882 Piping = 0.02B = \$1,471 Insulation for = 0.10B ductwork = \$7,353 Painting = 0.01B = \$735 ## Page 21 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha 1.000 Direct Installation Costs, C = (Foundation and Supports + Handling and Erection + Electrical_+ Piping + Insulation + Painting) = \$31,617 Site Preparation, = \$0 Building Cost, E = \$0 TOTAL DIRECT COSTS = \$ (B + C + D + E) = \$105,147 ## INDIRECT COSTS (INSTALLATION) Engineering = 0.10 B = \$7,353 Construction = 0.05 B and field expense = \$3,677 Contractor Fees = 0.10 B = \$7,353 = 0.02 B Start-Up = \$1,470 Performance Test = 0.01 B = \$735 Contingencies = 0.03 B = \$2,205 TOTAL INDIRECT COSTS = (Engineering + Construction + Contractor Fees + Start-Up + Performance Test + Contingencies) costs = \$ 22,793 # Page 22 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha TOTAL CAPITAL INVESTMENT (TCI) = (TOTAL DIRECT COSTS + TOTAL INDIRECT COSTS) = \$(105,147 + 22,793) = \$ 127,940 DIRECT ANNUAL COSTS System Pressure Drop, P_{sys} = 5 inches Parameter Fan power requirement, Fp = 23 kwh/yr 1.81E-04*Qea*P*HRS Refrigeration power requirement, Rp = 1588.9 kwh/yr H_{load}*HRS*2.9E-04 kwh/btu/Er Coolant pumping requirement, Pp = 245.3 kwh/y [2.52 E-04 * Qcool/60/Sg * H *Sg/7.48/n] * HRS *0.748 From Table 4.6-8 of HAP manual Annual electricity cost = \$110 U\$elec * (Fp + Rp + Pp) Cost of Refrigerant = \$0 Operating costs (a) Operating labor costs = \$4,800 [(0.5 hr/shift)/ (8 hr/shift)] *(HRS) * (\$hourly rate) (b) Supervisory Costs = \$720 0.15 * (Operating labor Operating costs = \$(4,800 + 720) = \$ 5,520 # Page 23 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha #### Maintenance cost (a) Maintenance labor costs = \$4,800 [(0.5 hr/shift)/(8 hr/shift)] *(HRS) * (\$hourly rate) (b) Maintenace materials = \$4,800 1.0 * (Maintenance labor costs) 1.00 Maintenance costs = \$(4,800 + 4,800) = \$ 9,600 Disposal of recovered HAP = \$208 V_{hap} * ER * 2000 *RE TOTAL DIRECT ANNUAL COSTS = (Electricity + Refrigerant + Operating + Maintenance + Disposal of recovered HAP) Costs = \$15,438 #### INDIRECT ANNUAL COSTS Overhead = 0.60 * (Operating + Maintenance) = \$9,072 Property Tax = 1 percent of TCI = \$1,279 Insurance = 1 percent of TCI = \$1,279 Administrative = 1 percent of TCI = \$1,279 Capital Recovery = CRF * TCI Capital recovery cost factor of life = 0.1627 = \$0.1627*127,940, is based on 10% interest = \$20,822 rate and 10 years Total Indirect costs = (Overhead + Property Tax + Insurance + Administrative + Capital Recovery) Costs = \$33,731 ## Page 24 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha TOTAL ANNUAL COSTS = TOTAL INDIRECT ANNUAL COSTS + TOTAL DIRECT ANNUAL COSTS = \$(33,731 + 15,438) = \$ 49,169 ## 2.B Absorption Control Technology Average flow rate, Q_{avg} = 10 scfm Maximum flow rate, Qe = 10 scfm Temperature, T_e $= 77^{\circ} F$ = VOC HAP concentration, HAPe = 185034 ppmv Pressure, Pe = 760 mm Hg Removal efficiency, RE = 58.8% Mol.wt. of emission stream, Mwe = 70.87 lb/lb-mol Solvent used = Water Slope of equilibrium curve, m = 2.64 from Perry's Handbook Figure 14-14 Mol. Wt. of solvent, Mw_{sol} = 18 lb/lb-mol Disposal cost of solvent, Dsc = \$266/1,000 gals Schmidt # in gas, Scg = 1.24 # Page 25 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha | Schmidt | # | in | |---------|---|-----| | liquid, | | Scl | = 804 $U_1/(P_1*D_1)$ Solvent density, D1 $= 62.18 \text{ lb/ft}^3$ Solvent Viscosity, U₁ = 0.815 cp Weast Pg. F-42 Absorption factor, AF = 1.6 from HAP manual example case * * * Z = * * Z = * Z Packing constant, A = 28 Packing constant, e = 0.74 Fraction of Flooding V., f = 0.6 Packing constant, b = 3.82 Packing constant, c = 0.41 Packing constant, d = 0.45 Packing Packing constant, Y = 0.0125 constant, s Packing = 0.22 constant, g = 11.13 Packing constant, r = 0.00295 #### Page 26 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha Bed type = Single Packing material cost, P_{cost} $= $12.75/ft^3$ Hours/yr = 2560 Electrical cost = \$0.059/kwh Water cost = \$0.20/1,000 gals Operating labor cost = \$30/hr Maintenance labor = \$30/hr CALCULATIONS Gas stream flow rate, Gmol = 1.55 lb-mol/hr 0.155*Qe Liquid flow rate, L_{mol} = 6.55 lb-mol/hr AF*m*Gmol Liquid flow rate, L_{gal} = 0.24 gal/min [Lmol*MWsol*(1/Dl)*7.48]/60 Solvent flow rate, L = 118 lb/hr Mwsol * Lmol - WE STONE Gas stream flow rate, G = 109.85 lb/hr Mwe * Gmol Density of Dg gas, $= 0.181 \text{ lb/ft}^3$ P*M/(R*T) Abscissa, ABS = 0.058 = 0.14 Read from Figure 4.7-2 $L/G * (D_q/D_1)^2$ Gas flow at flooding, Gaf Ordinate, ORD = 0.874 lb/hr [ORD * Dg *Dl *Gc / $((a/e^3) * (Ul^{0.2}))$] 0.5 # Page 27 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha Gas flow, Ga = 0.524 lb/hr f * Gaf Area of column, Acol = 0.06 ft^2 G/(3,600 * Ga) Diameter of column = 1.00 ft 1.13 *Acol^{0.5} # Gas transfer units, Nog = 2 Equation 4.7-13, HAP Manual Liquid flow rate, T. " = $2025 lb/hr-ft^2$ L/Acol Ht of gas transfer unit, Hg = 3.048 ft $[b * (3600 * Ga)^{c} /$ (L"d] *Scg Ht of Liq transfer unit, Hl = 1.63 ft Y * (L"/Ul") * Scl 0.5 Ht of transfer unit, Hog = 4.07 ft Hg + (1/AF) * Hl Column Height, Htcol = 8.1 ft Nog * Hog Total column height, Httot = 10.4 ft HTcol + 2 + 0.25 * Dcol Volume of packing material, Vpack $= 6.4 \text{ ft}^3$ Pressure drop through column, $= 2.74 \text{ lb/ft}^2\text{-ft}$ Total pressure drop, Ptot = 4.28 in H_2O Pa * HTcol/5.2 ## Page 28 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha CAPITAL COSTS DIRECT COSTS Purchased equipment costs Absorber Tower Capital Cost, RCC = \$4,967 From Figure 4.7-4, corrected to April, 1992 dollars Auxiliary Equipment Cost, AEC = \$25,000 Parameter Packing material, = \$86 Vpack * Pcost, corrected to April, 1992 dollars Total Equipment Cost, A = \$ (RCC + AEC + PM) = \$30,053 Instrumentation, = 0.10 * A = \$3,005 Sales Taxes, S = 0.05 A= \$1,503 Freight, F = 0.05 * A = \$1,503 Purchas Equipment B = \$ (A + I + S + F) = \$ 36,064 Direct Installation Costs Foundation and = 0.012 B Supports = \$4,328 Handling and Erection = 0.4 B = \$14,425 ## Page 29 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha Electrical = 0.01 B = \$361 Piping , = 0.03 B = \$10,819 Insulation for = 0.01 Bductwork = \$361 Painting = 0.01B = \$361 Direct Installation = (Foundation and Supports + Handling and Costs, C Erection + Electrical + Piping + Insulation + Painting) Costs = \$30,654 Site Preparation, D = \$0 Building Cost, E = \$0 TOTAL DIRECT COSTS = \$ (B + C + D + E) = \$66,718 ### INDIRECT COSTS (INSTALLATION) Engineering = 0.10 B = \$3,606 Construction = 0.10 B= \$3,606 and field expense Contractor Fees = 0.10 B = \$3,606 Start-Up = 0.01 B = \$361 Performance Test = 0.01 B = \$361 #### Page 30 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha Contingencies = 0.03 B= \$1,082 TOTAL INDIRECT COSTS = (Engineering + Construction + Contractor Fees + Start-Up + Performance Test + Contingencies) costs = \$ 12,622 TOTAL CAPITAL = (TOTAL DIRECT COSTS INVESTMENT (TCI) + TOTAL INDIRECT COSTS) = \$(66,718 + 12,622) = \$ 79,340 DIRECT ANNUAL COSTS Actual em. str. flow rate, Qea = 10 acfm Annual electricity requirement, Fp = 20 kwh/yr Annual electricity cost, R_p = \$1 Fp * U\$Elec Annual solvent requirement, Asr = 36,293 gallons Annual solvent cost, ASC = \$7 ASR * Pcw * 1/1000 Operating costs (a) Operating labor costs = \$4,800 [(0.5 hr/shift)/ (8 hr/shift)] *(HRS)*(\$hourly rate) (b) Supervisory Costs = \$720 0.15*(Operating labor costs) Operating costs = \$(4,800 + 720) = \$ 5,520 ## Page 31 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha # Maintenance cost (a) Maintenance labor costs = \$4,800 [(0.5 hr/shift)/(8 hr/shift)] 1.00 *(HRS) *(\$hourly rate) (b) Maintenace materials = \$4,800 1.0*(Maintenance labor costs) Maintenance costs = \$(4,800 + 4,800) = \$ 9,600 Disposal of solvent = \$9,654 ASR * Dsc TOTAL DIRECT ANNUAL COSTS = (Electricity + solvent + operating + Maintenance + Disposal of solvent) Costs = \$24,782 #### INDIRECT ANNUAL COSTS Overhead = 0.60 * (Operating + Maintenance) = \$9,072 Property Tax = 1 percent of TCI = \$793 Insurance = 1 percent of TCI = \$793 Administrative = 2 percent of TCI = \$1,587 Capital Recovery = CRF * TCI Capital recovery cost factor = \$79,340*0.1627 is based on 10% interest rate = \$12,912 and 10 years of life = 0.1627 Total Indirect costs = (Overhead + Property Tax + Insurance + Administrative + Capital Recovery) Costs = \$25,158 # Page 32 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha TOTAL ANNUAL COSTS = TOTAL INDIRECT ANNUAL COSTS + TOTAL DIRECT ANNUAL COSTS = \$(25,158 + 24,782) = \$ 49,940 # Summary of Economic Feasibility Analysis ## 1. CONDENSER | MODULE | TOTAL
VOC
EMISSIONS
(TONS/YR) | RACT CTG
CAPITAL
COST | RACT CTG
ANNUAL COST | ANNUAL
COST/TON
VOC
CONTROLLED | ANNUAL INCREMENTAL COST/TON VOC CONTROLLED | |---|--|-----------------------------|-------------------------|---|--| | A' Uncont. Prop.RACT CTG RACT *Increm.Red | 4.04
2.71
1.85
0.86 | \$283,498 | \$81,909 | \$37,401 | \$95,243 | | B Uncont. Prop.RACT CTG RACT *Increm.Red | 2.83
2.07
1.44
0.63 | \$283,498 | \$81,909 | \$58,927 | \$130,014 | | C Uncont. Prop.RACT CTG RACT *Increm.Red | 3.43
2.31
1.57
0.74 | \$283,498 | \$81,909 | \$44,037 | \$110,688 | | D Uncont. Prop.RACT CTG RACT *Increm.Red | 5.65
3.20
2.08
1.12 | \$283,498 | \$81,909 | \$22,944 | \$73,133 | # Page 33 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha | E
Uncont.
Prop.RACT
CTG RACT
*Increm.Red | 5.24
3.04
, 1.99
1.05 | \$127,940 | \$49,169 | \$39,366 | \$46,828 | |---|--------------------------------|-------------|-----------|-----------|-----------| | F
Uncont.
Prop.RACT
CTG RACT
*Increm.Red | 5.24
3.04
1.99
1.05 | \$127,940 | \$49,169 | \$39,366 | \$46,828 | | 30 Gal-A
Uncont.
Prop.RACT
CTG RACT
*Increm.Red | 0.49
0.42
0.22
0.20 | \$127,940 | \$49,169 | \$182,107 | \$245,845 | | 30 Gal-B
Uncont.
Prop.RACT
CTG RACT
*Increm.Red | 0.45
0.38
0.19
0.19 | \$127,940 | \$49,169 | \$189,112 | \$258,784 | | C-Wing
Uncont.
Prop.RACT
CTG RACT
*Increm.Red | 1.94
1.42
0.88
0.54 | \$127,940 | \$49,169 | \$46,386 | \$91,053 | | TOTAL Uncont. Prop.RACT CTG RACT *Increm.Red | 29.3
18.6
12.2
6.38 | \$1,773,692 | \$573,481 | \$33,537 | \$89,887 | . ** : *** # Page 34 of 35 Supplement to original submittal to EPA for SIP change Eli Lilly and Company Indianapolis, Indiana CP 097-3341 Plt. ID 097-00072 Review Engineer: Dr. T.P.Sinha . e.c. : 122 # 2. Absorber | MODULE | TOTAL VOC EMISSIONS (TONS/YR) | RACT CTG
CAPITAL
COST | RACT CTG
ANNUAL COST | ANNUAL COST/TON VOC CONTROLLED | ANNUAL
INCREMENTAL
COST/TON
VOC
CONTROLLED | |---|-------------------------------|-----------------------------|-------------------------|--------------------------------|--| | A
Uncont.
Prop.RACT
Aft. Absrb.
*Increm.Red | 4.04
2.71
2.26
0.45 | \$276,020 | \$89,816 | \$50,458 | \$199,591 | | B
Uncont.
Prop.RACT
Aft. Absrb.
*Increm.Red | 2.83
2.07
1.77
0.30 | \$276,020 | \$89,816 | \$86,362 | \$299,387 | | C Uncont. Prop.RACT Aft. Absrb. *Increm.Red | 3.43
2.31
2.01
0.30 | \$276,020 | \$89,816 | \$63,251 | \$299,387 | | D
Uncont.
Prop.RACT
Aft. Absrb.
*Increm.Red | 5.65
3.20
2.93
0.27 | \$276,020 | \$89,816 | \$33,021 | \$332,652 | | E
Uncont.
Prop.RACT
Aft. Absrb.
*Increm.Red | 5.24
3.04
2.76
0.28 | \$79,340 | \$49,940 | \$20,137 | \$178,357 |